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Abstract 

Equations for the determination of second order rate constants with the pulse overlay method, based on the 
application of etipirical peak shape equations are derived. This approach was then applied in an experimental 
study of the rection of pyridine with tetrachloroterephthaloyl chloride in a reversed-phase HPLC system. Rate 
constants evaluated from reaction chromatograms were found to be in good agreement with those obtained earlier 
for this reaction by Chu and Langer in chromatographic reactor experiments under pseudo-first order conditions. 

1. Introduction 

Chromatographic reactors can provide a num- 
ber of advantages for carrying out and studying 
chemical reactions [l-5]. The determination of 
rate constants through analysis of typical reac- 
tion chromatograms from chemical reactions in 
chromatographic columns has been described by 
many workers over the last three decades for gas 
chromatographic systems and, more recently, for 
liquid chromatographic systems. A number of 
reviews and references to other reviews on these 
subjects are available [l-5]. However, almost all 
the published applications and theoretical work 
have been devoted to first-order or pseudo-first- 
order reactions which were either reversible or 
irreversible. 

the rate constant were used. More recently, the 
concept of the “extended ideal chromatographic 
reactor (EICR)” [8,9] was proposed and applied 
to second-order reactions on gas chromatograph- 
ic columns, simplifying the calculations for ob- 
taining rate constants to a considerable extent. 
For the EICR development the following as- 
sumptions are used: (1) isothermal column, 
negligible temperature and pressure gradients 
neglected, (2) linear sorption isotherms, (3) rate 
of mass transfer does not limit the chemical 
reaction, (4) the reactant peak shape is a Gaus- 
sian function, (5) the first absolute moment and 
the second central moment depend linearly on 
the local coordinate. 

Up to the end of the last decade there were 
only two papers [6,7] describing second-order 
reaction studies on gas chromatographic col- 
umns; in both instances numerical evaluations of 

* Corresponding author. 

Assumptions l-3 coincide with those of the 
“ideal chromatographic reactor” model intro- 
duced by Langer and co-workers [4,5]. Assump- 
tions 4 and 5 which extend this model with 
respect to peak shape and peak spreading are 
necessary for treating second-order reactions. 

The EICR model, however, has the character 
of an “ad hoc hypothesis”, and it was somewhat 
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unclear, how it might fit within the framework of 
the original balance equations of the chromato- 
graphic reactor. The purpose of this work is to 
explore the connection between these models 
and, moreover, to report some results from an 
initial experimental investigation of a second- 
order reaction in a liquid chromatographic reac- 
tor. 

2. Mathematical modeling 

2.1. Balance equations 

We can start the theoretical treatment with the 
balance equations of isothermal linear chromato- 
graphic systems, which are commonly considered 
sufficient [lo] for modeling the chromatographic 
process, and extend them with general reaction 
terms. (More sophisticated models which have 
been discussed, i.e. [ll], are more suitable for 
the elucidation of partition kinetics than for our 
purposes .) 

For concentration in the mobile (m) phase: 

Di 
&i aciu aci 

ax2 ax - kfiqiCi + kfiUsi + rmj = dt 

(14 
For concentration in the stationary (s) phase: 

kfiqici - kfiasi + rSi = $$ (lb) 

These balance equations can be simplified 
further by neglecting diffusional effects (which is 
justified for liquid chromatography in general 
and for gas chromatography with adequate flow- 
rates) and addressing situations where mass 
transfer rates do not limit reaction kinetics. 
Then, 

ac.f.4 
-A-k.q.c.+k,.a .-r.=a”l 

ax fr I I r SI I at 

The “lumped” reaction term ri is the sum of the 
reaction terms T,,,~ and rSi considering the effec- 
tive phase volume ratios of the mobile phase and 

the stationary phase with the kinetic time vari- 
able. The latter can be the void time or the 
reactant retention time or, where more than one 
reactant is involved, each of the reactant re- 
tention times. With first-order reactions the re- 
tention time of the reactant is generally used. 
For second-order reactions we can reference 
with respect to the void time, since then results 
can be interrelated where more than one reac- 
tant with different retentions are involved. The 
general reaction term, ri, is then 

ri = 2 vijkaj h csij 
j=l i=l 

with the apparent rate constant of the jth reac- 
tion: 

k, = kmj + +-. k, h Kgii 
In i=l 

Now, the partial differential equation system (2) 
can be transformed into a system of ordinary 
differential equations of the statistical moments 
of the reactants through multiplication of the 
whole system (2) by to for the zeroth moment, t* 
for the first moment, t2 for the second moment 
and so on, followed by integrating the system 
over time from zero to infinity. Using the defin- 
ing equations for the moments, a tedious but 
straightforward rearrangement leads to the fol- 
lowing set of ordinary differential equations for 
the zeroth absolute and the first four moments: 

d In rii,, __U.-EM 
d.x ROi 

d In tioi 
-u.%+(qi+l)=u.-_. (ki - PRli) 

1 
d In liioi 

=U ~-*(Pzi -hi) dx 

1 
dln rii 

=+~(cc3i-cLRIi) 

dCLqi 
--u.- 

dx 

L (5) 
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Isicqi + I)+3 kfi 
.4icczi+(j._ %Pli +fj.4i 

kfi k;, 1 I 
d In riioi 

= u *-. hi - PR,i) dx 

An arbitrary formulation for any moment is 
found to be: 

d&C 
-u.- 

dx 

n (?I - l)! qiP(j-2)i 

P(n-l)i(qi + l) + C, 
j=* (j-2)! kZ+‘_j 1 

d In ti,i 
= 

U’~‘(Ki-kni) 

It can be noted that the derivation of Eq. 5 
does not require the introduction of any simplifi- 
cations. Furthermore, in these formulae the 
linear flow-rate, U, is still a function of the local 
coordinate, x. Therefore, a zeroth moment was 
introduced, which is related to the average flow- 
rate in a chromatographic column. For a gas 
chromatographic column the flow-rate, u, is 
usually obtained from the relation 

For a liquid chromatographic system, how- 
ever, with negligible mobile phase compressibili- 
ty and constant linear flow-rate, the zeroth 
moment itself can be used. 

2.2. Introduction of empirical peak shape 
equations 

Eq. 5 contains terms of the form, hni, desig- 
nated as “moments of reaction”. Those are 
abbreviations of the following: 

I 

m 
rit” dt 

/-&i= Om 

I 

(8) 

0 
ri dt 

For irreversible reactions following simple power 
law kinetics, Eq. 8 in terms of concentrations 
becomes 

I 
m I 

o t” n ~4’ dt 
i=l 

PR,,= 

I 

m I (9) 

o G c;‘dt 
i- 

Furthermore, these concentrations can be ex- 
pressed in terms of a product of concentration- 
time (peak-) areas and distribution density (peak 
shape) functions: 

ci = moiq (10) 

For such irreversible reactions, the moments 
of the reactions are the moments of the reaction 
order power of the peak shape functions: 

/hi= Om I 

I 

(11) 

o j-$Ppidt 
i- 

For first-order reactions, it can be seen that 
there is no difference between the moments of 
reaction and the common moments. Therefore, 
the differences in Eq. 5 become zero to give a 
linear differential equation system. However, to 
evaluate the reaction moments for a second 
order reaction the peak shapes which are solu- 
tions of Eq. 2 appear to be necessary. Fortunate- 
ly there are empirical and plausible peak shape 
functions, which might be used in place of the 
unknown solutions. Of these, the Gaussian func- 
tion is the simplest and most frequently en- 
countered. 

2.3. Reaction Type, 2A, + P 

For simplicity, a dimerization reaction can be 
considered first. For this reaction type we ex- 
amine besides the Gaussian, the EMG function 
[12], the Gram-Charlier series (GCS) [13] and 
the GEX function [14] as well. (Function repre- 
sentations are given in the list of symbols.) 

Analytical solutions are available for GCS and 
for the Gaussian, of course, with the framework 
of Eq. 11. They are presented here in terms of 
central moments, beginning with the second, 
because of simpler formulations. (Any set of 



282 R. Thede et al. / J. Chromatogr. A 683 (1994) 279-291 

central moments can be converted into a set of 
absolute moments and vice versa.) 

For the Gaussian function (with only one 
reactant, the index i can be omitted): 

I 

A,=$ 

For the GCS (Note that the &, 
moments over p,, not over pR1): 

ml 5s2 E 35E2 
m R(’ = m ’ +96+16+ 3072 -1 
PRl = ELI + 

5ES S --- 
384 4 

35E2 E 5s’ 

3072+16+96+1 

1lES S --- 
PL 256 8 = 

35E2 
E 5S2 

3072 +16+x+’ 

(12) 

are central 

’ (13) 

, 3/G 
lb4 =-. 

4 I. 
The other peak shape equations apparently do 
not permit an analytical solution with respect to 
Eq. 11. However, the possibility of fitting a 
linear regression model to the numerical results 
of Eq. 11 remains. Using the Gaussian shape as 
an ideal model, the differences between the 
moments of the reaction for the Gaussian and 
for the other peak shape equations can be 
considered: 

(14) 

Using results from Eq. 12 in the equations above 
it can be seen that all Fi values become zero for 
Gaussian shapes. To match the deviations of the 
other functions from the Gaussian the following 
regression model can be used: 

= a,$ + a,,E + a,,S2 + adiE + a,,SE (15) 

Results from those regressions are summarized 
in Table 1. Eq. 5 was solved using a fourth-order 
Runge-Kutta method. All of the empirical peak 
shape equations give fairly similar plots when 
this is done for moments vs. the local coordinate 
(see Fig. 1). Table 2 shows that the results for 
the GCS are in increasing accord with the 
solution of Eq. 2 by an explicit finite difference 
method as the number of grid points in the 
length coordinate increases. 

Table 3 illustrates some results for a com- 

1.50 1 

Fig. 1. Increase of the second central moment of the reactant 

with increasing conversion (reduced moments referenced to 
values without reaction) and advancement through the col- 

umn. Conversions: a = 0%; b = 85%; c = 90%; d = 93%; e = 

96%. 
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Table 1 
Coefficients for deviations from Gaussian function for empirical peak shape equations calculated from Eq. 15 

F (EMG) 01 a2 a3 a4 a, 

0.0387 
-0.137 
-0.209 

0.0957 

aI 
0, 

-0.291 
0.0291 
0.315 
0 

0 
0 
0 
0 

a2 
0.0444 

-0.0457 
-0.246 

0.0922 
-0.395 

0.0952 0 0 
-0.0851 0 0 
-0.0169 0 0 

0.0897 0 0 

a3 a4 as 
0.0745 -0.0138 0 
0.0703 0 0.0630 
0.147 0.193 0.114 

-0.136 -0.0827 -0.186 
0.565 0.264 0.298 

Table 2 
Comparison between the moments obtained from Eq. 11 with the GCS function and the results from a finite difference solution 
(FD) of Eq. 3 with increasing grid points (4 = 1, k, = 1, m,(O) = 1, k, = 100, p;(O) = 0.001, x = 1) 

Number of 
points in 
x-direction 

100 0.812 1.00 0.550 0.219 0.304 
500 0.951 1.00 0.867 0.661 0.801 

1000 0.977 1.00 0.936 0.830 0.914 
7500 0.998 1 0.9997 0.963 0.975 

parison between the empirical peak shape equa- 
tions. The EMG function deviates most from 
results with the others. Results from use of the 
GEX function do not differ much from those 
using the GCS function. Therefore, from those 
considered here the GCS function is the next 
best approximation relative to the Gaussian. 

The following conclusions results from this 
numerical investigation: 

(1) The first absolute moment does not de- 
pend significantly on conversion. 

(2) The second central moment increases with 
conversion, however its linear dependence on 
the locale coordinate is maintained. 

(3) The deviation of the fourth central mo- 
ment, or in other words of the excess, has the 
largest influence on non-ideal deviations with 
conversion. 

Table 3 
Comparison between the moments from the GCS and the other empirical functions using Eq. 11 (parameters: see Table 2, 
GAU = Gaussian) 

Peak shape 
function 

(PSF) 

PL,(GW 
t4’W 

GAU 1.001 1.004 0.986 - - 
EMG 1.007 1.001 0.971 0.848 - 

GEX 1.003 1.0 0.996 0.978 1.005 
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The first conclusion above enables us now to 
derive the equations of the EICR from Eq. 5, 
i.e. from the balance equations, since in this case 
it becomes possible to rewrite Eq. 5 to yield: 

1 
--am 

dlnm, 
24 RO=- 

dx 

dAE.L, 
x=0 

d4-4 dlnm, 
- = 7 * (I& - /-4 dx 

d44 dlnm, 
--7.(&-P;) dx 

b (16) 

dAt-4 
dx +6/-G dr 

.%=y.(r;4_p;) I 
The first three equations of Eq. 16 -together 
with the Gaussian assumption for the peak shape 
equation- are the very equations of the EICR, 
and for the case of a Gaussian model the other 
equations become non-relevant. The solution for 
this situation was presented in [15]. 

For the zeroth moment we find: 

1 1 2Qo -_=- - 
‘m0 m,(O) + m 

(17) 

We can also find an equation for the zeroth 
moment using the GCS model, the first equation 
of the system (5), and a linear dependence of the 
second central moment on the local coordinate. 
However, the use of the GCS model results in 
realistic chromatographic peaks only in a limited 
range, for the skew and for the excess. If the 
second central moment of the injected peak 
becomes very small, as assumed for the EICR, 
the skew and the excess produced by Eq. 2 
become very large. Therefore, the introduction 
of the GCS model as the “next best approxi- 
mation” to the real chromatographic peak de- 
mands well defined initial conditions. Fortunate- 
ly, the availability of injection valves with a well 
defined geometry with liquid chromatography 
makes this problem less challenging than with 
gas chromatography. 

2.4. Reactions of the type, A, + A, + P 

This reaction type is at first glance consider- 
able more complicated, since one has to deal 

with the moments of both reactants and the 
distance between them in space and in time, 
since in most instances the chromatographic 
process will give separation because of the differ- 
ences in the rate of travel of these peaks through 
the column. Thus, no simple regression model 
could be found, and the theoretical investigation 
of peak shape equations had to be confined to 
these cases of analytical solution of Eq. 11 where 
Gaussian and GCS peak shapes were involved. 
The analytical solutions of the moments of the 
reaction with the GCS could only be obtained in 
a compact form using the following terms: 

(18) 

Since these solutions require several pages they 
are not presented here. Now, we are again able 
to apply the Runge-Kutta method to the solu- 
tion of system 11 and thereby investigate the 
moments as functions of the local coordinate. 

As illustrated in Figs. 2 and 3 the use of GCS 
as the “next best approximation” relative to a 
Gaussian model results in a considerable devia- 
tion from the linear dependence of the second 
central moment on the local coordinate starting 
at conversions close to 50%. The initial con- 
ditions are of less importance for reaction type, 
since reaction can be initiated deeper into the 
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0.00 0.20 0.40 0.60 0.80 LOO 

x,1 + 

Fig. 2. Slight non-linearity in the second central moments in 
the case of a pulse overlay reaction with ca. 60% conversion 
(stoichiometric case, reduced moments referenced to values 
without reaction). 

column, where well defined peak shapes are 
formed as a result of the chromatographic pro- 
cess with unreacted materials. 

As shown before [16] for a linear dependence 
of the second central moments on the local 
coordinate, the following equations for the 
zeroth moment can be derived: 

mo 

0.00 0.20 0.40 0.60 0.80 L.00 

Xl, + 

Fig. 3. Strong deviation from linearity in the second central 
moments in the case of a pulse overlay reaction with ca. 80% 
conversion (stoichiometric case, reduced moments referenced 
to values without reaction). 

Non-stoichiometric case: 

ln(z)=ln(s) 

Stoichiometric case : 

(20) 

The integral appearing in Eqs. 19 and 20 can be 
separated in the following way: 

= 

lkcLll(~) - 4w2 I 

+;. I 
1 1 x - At’ 

.- 

0 IMWX) + cL;*(W x 

where. 

In those situations where the faster peak com- 
pletely overtakes the slower one in the column, 
the first integral in Eq. 21 obviously will become 
unity and the second approach zero. Therefore, 
fairly simple equations become available for the 
zeroth moment: 

Non-stoichiometric case: 

ln(z)=ln(s) 

t0 

(22) 
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Stoichiometric case: 

(23) 

2.5. Evaluation of rate constants from 
experimental results 

The calculation of rate constants from experi- 
ments minimally requires a knowledge of the 
following parameters: (a) flow-rate, (b) molar 
inlet amounts of reactants, (c) retention times of 
reactants and (recommended) void time, (d) 
standard deviation of reactant peak for the case 
2A+ P, (e) ratio of the outlet pulse area to the 
inlet pulse area for at least one of the reactants 
as measured for several different injection 
amounts (recommended) and/or flow-rates. 

The last parameter is the most crucial, because 
chromatographic equipment generally does not 
allow a direct measurement of the inlet pulse 
area without an additional detector. However, 
the use of the following approaches makes it 
possible to proceed without the reactant area at 
the column inlet [4]: 

(a) Internal standard method: an inert sub- 
stance is mixed with one of the reactants, and 
the ratio of the pulse areas of both substances is 
measured in a non-reactive system. Then, for the 
reactive system this known ratio can be used to 
substitute for the inlet pulse area. 

(b) Product-reactant method: where the ratio 
of the molar detector responses for the reactant 
and the product are known, then the loss of 
reactant area can be evaluated from the product 
area. 

(c) External standard method: the difference 
between the external and the internal standard 
method is that the inert standard is not mixed 
with the reactant but introduced with a precision 
injector between reaction experiments. For the 
case of a reaction of the type A, + A, + P, one 
of the reactants can serve as an external stan- 
dard. This simplifies the calculations considera- 
bly. 

Now, with the experimental parameters men- 
tioned above rate constants can be obtained 
through: (I) numerical analysis from Eq. 2, (II) 

numerical analysis from Eq. 5, (III) analytically 
from Eqs. 17, and 22 or 23, respectively. As 
shown before, the results of method II will not 
differ significantly from method I, if a GCS 
function and appropriate initial conditions are 
applied. The time for the calculations however is 
considerably shorter with method II. In those 
situations where only moderate (up to 50-60%) 
conversions are achieved with equipment which 
is not particularly sophisticated, experimental 
error most probably will exceed the systematic 
error from use of the analytical equations. 

The experimental system which was used to 
test the application of the equations above was 
the first step in the reaction of pyridine with 
tetrachloroterephthaloyl chloride (TCTPCI,) 
shown below [17]. 

Addition of pyridine to tetrachloro- 
terephthaloyl chloride: This well studied addition 
reaction to form a quatemary ammonium salt 
has been used earlier on a number of occasions 
as a model pseudo-first-order reaction [17,18] in 
the liquid chromatographic reactor. In the earlier 
experiments, pyridine was maintained in large 
excess in the mobile ,phase with pulses of 
TCTPCl, introduced into the liquid phase so that 
reaction could proceed as shown in Eq. 24. For 
testing the approach to the pulse overlay tech- 
nique developed here, the reaction was carried 
out under conditions which made it truly second 
order. 

3. Experimental 

The array consisted of a Waters 590 HPLC 
pump, Beckman Model 210 sample injection 
valve with a 20-~1 sample loop column, a Perkin- 
Elmer LC 55 variable-wavelength UV detector 
set at 275 nm and an SP 4050 Spectra-Physics 
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integrator. The column was Altex Ultrasphere 
ODS 250 mm x 4.6 mm I.D. Methanol (in glass- 
distilled grade) was the mobile phase. 

A series of preliminary experiments was used 
to match the concentration conditions of a true 
second order reaction and to accommodate the 
limited solubility of TCTPCl, in methanol while 
achieving a reasonable conversion. With the 
wavelength and conditions used here a useful 
reaction chromatogram for both reactants (which 
have considerably different absorption charac- 
teristics in the UV range) and product was 
obtained. 

Useful results were achieved using constant 
injections of TCTPCl, (0.05 M dissolved in 
tetrahydrofuran). Pyridine pulse concentrations 
were varied in the range from 0.4 to 0.1 M in 
steps of 0.1 M with a 0.2 ml/min flow-rate of 
methanol mobile phase. The flow-rate was also 
varied in the range from 0.2 to 0.5 ml/min in 
steps of. 0.1 ml/min. The reaction was carried 
out at ambient temperature in a controlled-tem- 
perature room (about 298 K). 

The TCTPCl, pulse as the slower moving 
reactant was introduced first, at which time the 
integrator was started. After about 1 min the 
pyridine pulse was introduced. To obtain the 
conversion with respect to the initial TCTPCl, 
pulse, separate TCTPCl, pulses were introduced 
to the column periodically as an external stan- 
dard. This was done before each reaction experi- 
ment. Pyridine pulses were also introduced 
separately in a non-reacting mode in order to 
obtain the characteristic retention time. 

4. Results and discussion 

Figs. 4-6 show a series of typical reaction 
chromatograms with increasing pyridine concen- 
trations. In these chromatograms the pyridine 
(II), the product quaternary ammonium salt 
(III) and TCTPCl, (I) are eluted consecutively. 
Now, in order to be comparable with earlier 
work [17] an apparent rate constant for the 
column with respect to TCTPCI, was evaluated, 
using Eq. 22 in the following formulation: 

0.00 

0.00 0.5, I.03 1.54 2.04 2.57 

LO-'tmin---' 

Fig. 4. Reaction chromatogram resulting from successive 
injections of TCTPCI, and pyridine (0.1 M pyridine). Peaks: 
II = pyridine; III = quaternary pyridinium salt; I = TCTPCI,. 

X=(c,,-c,,)* 20*y61 
Y=ln(&)-ln(l+z(l-&)) (24) 

and 

Y=aX J 

Index 1 refers to TCTPCI,, with A representing 

0.00 0.50 *.w L.51 2.01 2.51 

Io-‘,,“i”- 

Fig. 5. Reaction chromatogram resulting from successive 
injections of TCT’PCI, and pyridine (0.3 M pyridine). Peaks: 
II = pyridine; III = quatemary salt intermediate; I = 
TCTPCI,. 
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1.86. 

1.39. 

0.93 _ 

III 
0.46. 

0.00, 

0.00 0.50 I.00 L.5.L 2.0, 2.5, 

-* 
10 tm,n- 

Fig. 6. Reaction chromatogram resulting from successive 
injections of TCTPCI, and pyridine (0.5 M pyridine). Peaks 
as in Fig. 5. 

peak areas. The cl0 and cZO are the concen- 
trations of the pulsed solutions. The slope is then 
the product of the apparent rate constant for the 
column under our conditions and the corre- 
sponding time divided by the difference between 
reactant retention times. The intercept should be 
zero. Table 4 summarizes our results. 

As can be seen, there is no significant differ- 
ence between the slopes, and the intercepts do 
not significantly deviate from zero. Fig. 7 pre- 

Fig. 7. Plot of X and Y of Eq. 24 for the TCTPCl,-pyridine 
reaction. 

sents all the data of Table 4 in a single plot so 
that comparisons can be made. 

From the slope of 2.78 ? 0.12 l/(mol * min) and 
the average ratio of the retention time difference 
0.37 to the retention time of TCTPCl, we obtain 
an apparent second order rate constant of the 
reaction k, = 0.0171? 0.0007 l/(mol - s), which is 
in very good agreement with the rate constants, 
recalculated from our earlier pseudo-first order 
reaction constant measurements [17]: 0.019 l/ 
(mol. s) (with 0.005 M pyridine) and 0.0177 l/ 
(mol. s) (with 0.0075 M pyridine). 

Moreover, it was possible to calculate a reac- 
tion chromatogram from Eq. 3. The molar 
detector responses could be calculated on the 
basis of material introduced to the column and 
measured chromatographic areas. The partial 
differential equation system was solved by an 
explicit finite difference method, using a grid of 
1000 steps in space and time. The mass transfer 
coefficients were adjusted to meet the standard 
deviations of the pulses in a manner similar to 
the method used by Czok and Guiochon [19]. 
The resulting, calculated chromatogram is com- 
pared to an experimental one as shown in Fig. 8. 
Though there is some nonideality evident par- 
ticularly for the TCTPCl,-peak and there ap- 
pears to be some interaction between the 
pyridine and the quaternary ammonium product, 
the agreement between these two chromato- 
grams is quite satisfactory. 

5. Conclusions 

The peak overlay method offers the possibility 
of studying second-order reactions in the liquid 
chromatographic reactor even where retentions 
of the two reactants differ. In comparison to 
pseudo-first-order methods, it can offer advan- 
tages especially for fast reactions and also 
because there is the possibility of separating 
products and reactants completely. 

To calculate the column rate constant, mea- 
surements of both reactant retention times and 
the peak area of one reactant is necessary. The 
Gram-Charlier series proved to be suitable for 
use as an empirical peak shape equation, how- 
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Results from regressions of experimental values with respect to Eq. 24 

Experiment 
(see Experimental 
section) 

s,ope (mol ; min) Intercept 

(1) Pyridine 
concentration varied 

(2) Pyridine 
concentration varied 

(3) Mobile phase flow- 
rate varied 

2.78 f 0.19 4.25 * lo-’ + 5.41’ lo-’ 

2.88 f 0.09 6.85. 1O-3 +- 2.20. lo-’ 

2.79 f 0.48 -5.17. 1O-4 + 1.26. 1O-2 

ever with moderate conversions the assumption 
of a Gaussian distribution is sufficient and leads 
to analytical terms for the evaluation of the rate 
constant. Experimental and numerical analysis 
showed that the rate constants found with this 
approach do not differ from those found by 
previously employed pseudo-first-order methods. 

Since all the substances involved in reaction 
here can be -at least in principle- completely 
separated, a comparison of experimental with 
recalculated chromatograms is quite feasible, the 
latter requiring only experimentally observed 
rate constants and mass transfer coefficients. 
Further development of the approach described 
here should make it possible to broaden the 
application of the liquid chromatographic reactor 
in the study of reaction kinetics. 

Fig. 8. Comparison of observed chromatogram with a nu- 
merically calculated chromatogram using a finite difference 
method (reduced time referenced to the column void time). 

Symbols 

A 

as 
Peak area 
effective concentration in the stationary 
phase 

C concentration in the mobile phase 
D diffusion coefficient 

E excess of peak shape: E = 
/A; - 3d2 

,2 
P-2 

see Eq. 14 
partition coefficient 
mass transfer coefficient 
apparent rate constant 
rate constant (stationary phase) 
rate constant (mobile phase) 
length of the column 
zeroth moment: m, = Jr c dt 
zeroth moment at the column inlet 
zeroth moment of the reaction: mnn = 

P 
4 

; 

t 

t0 
U 
V 
d 
X 
z 
a 

_.” 
$,” r dt 
pressure 
retention capacity 
reaction terms I 

skew of peak shape: S = G 
CL2 

time 
void time 
linear flow-rate 
volume or effective volume 
volume flow-rate 
length coordinate 
argument of the GCS (see Eq. 18) 
partial reaction order 
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At 

AP 

CL, 
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time delay from the beginning of the 
measurements 
difference between moment in reaction 
and without reaction 
absolute nth moments: 

$,” t”c dt 
I-% = 

m0 

l-4 absolute central moments: 

p, = .f,” (t - PJ’C dt 
n 

m0 

absolute moments in case that no reac- 
tion occurs 
fourth semi-invariant: & = & - 34’ 
nth moment of the reaction (Eq. 8) 
moment at the column outlet 
stoichiomeric coefficient 
integration variable in Eq. 18 defined as 

?P 

GAU 

GCS 

peak shape equation 

o-Pd2 -- q=&e 36 

p=& - e-‘ii 1 + 5 (z” - 32) 
( 

t: 
+&z4-6z2+3) 

> 

EMG emf2 dt 

6 breakthrough time of pulse maximum 

vg width parameter 
7 skew parameter 

GEX *=p. (s)b-l 

.exp(+*[l-(s)‘]) 

&I 
f 1 

a, b 

maximum peak height 
break through time of pulse beginning 
shape parameters 

Subscripts 

i number of the substance 

i number of the reaction 
n number of the moment 
m mobile phase 
S stationary phase 
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